Journal fur die Reine und Angewandte Mathematik

eISSN: 1435-5345pISSN: 0075-4102

Journal formatting to fit the target journal guidelines

Experts ensure all elements of your paper match journal formatting guidelines to improve publication success rate!

Key Metrics

CiteScore
3.1
H-Index
72
Impact Factor
< 5
SJR
Q1Applied Mathematics
SNIP
1.92

Journal Specifications

Indexed in the following public directories

  • Web of Science
  • SJR
Overview
  • Publisher
    WALTER DE GRUYTER GMBH
  • Language
    Multi-Language
  • Frequency
    Monthly
General Details
View less

Topics Covered

Elliptic curve
Moduli space
Mirror symmetry
Unit circle
Elementary proof
Mean curvature
Unitary group
Lie theory
Crepant resolution
Algebraic group
Vector field
Iwasawa theory
Canonical form
Riemann surface
Initial value problem
Cubic form
Finite field
Ricci curvature
Wreath product
Linear algebraic group

Year-wise Publication

FAQs

Since when has Journal fur die Reine und Angewandte Mathematik been publishing? Faqs

The Journal fur die Reine und Angewandte Mathematik has been publishing since 1826 till date.

How frequently is the Journal fur die Reine und Angewandte Mathematik published? Faqs

Journal fur die Reine und Angewandte Mathematik is published Monthly.

What is the H-index. SNIP score, Citescore and SJR of Journal fur die Reine und Angewandte Mathematik? Faqs

Journal fur die Reine und Angewandte Mathematik has a H-index score of 72, Citescore of 3.1, SNIP score of 1.92, & SJR of Q1

Who is the publisher of Journal fur die Reine und Angewandte Mathematik? Faqs

The publisher of Journal fur die Reine und Angewandte Mathematik is WALTER DE GRUYTER GMBH.

How can I view the journal metrics of Journal fur die Reine und Angewandte Mathematik on editage? Faqs

For the Journal fur die Reine und Angewandte Mathematik metrics, please refer to the section above on the page.

What is the eISSN and pISSN number of Journal fur die Reine und Angewandte Mathematik? Faqs

The eISSN number is 1435-5345 and pISSN number is 0075-4102 for Journal fur die Reine und Angewandte Mathematik.

What is the focus of this journal? Faqs

The journal covers a wide range of topics inlcuding Elliptic curve, Moduli space, Mirror symmetry, Unit circle, Elementary proof, Mean curvature, Unitary group, Lie theory, Crepant resolution, Algebraic group, Vector field, Iwasawa theory, Canonical form, Riemann surface, Initial value problem, Cubic form, Finite field, Ricci curvature, Wreath product, Linear algebraic group.

Why is it important to find the right journal for my research? Faqs

Choosing the right journal ensures that your research reaches the most relevant audience, thereby maximizing its scholarly impact and contribution to the field.

Can the choice of journal affect my academic career? Faqs

Absolutely. Publishing in reputable journals can enhance your academic profile, making you more competitive for grants, tenure, and other professional opportunities.

Is it advisable to target high-impact journals only? Faqs

While high-impact journals offer greater visibility, they are often highly competitive. It's essential to balance the journal's impact factor with the likelihood of your work being accepted.